By Topic

Stationarizable random processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

The familiar notion of inducing stationarity into a cyclostationary process by random translation is extended through characterization of the class of all second-order continuous-parameter processes (with autocorrelation functions that possess a generalized Fourier transform) that are {em stationarizable} in the wide sense by random translation. This class includes the nested set of proper subclasses: {em almost cyclostationary} processes, {em quasi-cyclostationary} processes, and {em cyclostationary} processes. The random translations that induce stationarity are also characterized. The concept of stationarizability is extended to the concept of asymptotic stationarizability, and the class of {em asymptotically stationarizable} processes is characterized. These characterizations are employed to derive characterizations of optimum linear and nonlinear time-invariant filters for nonstationary processes. Relative to optimum time-varying filters, these time-invariant filters offer advantages of implementational simplicity and computational efficiency, but at the expense of increased filtering error which in some applications is quite modest. The uses of a random translation for inducing stationarity-of-order-n, for increasing the degree of local stationarity, and for inducing stationarity into discrete-parameter processes are briefly described.

Published in:

Information Theory, IEEE Transactions on  (Volume:24 ,  Issue: 1 )