Cart (Loading....) | Create Account
Close category search window
 

Some results on arithmetic codes of composite length

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

A new upper bound on the minimum distance of binary cyclic arithmetic codes of composite length is derived. New classes of binary cyclic arithmetic codes of composite length are introduced. The error correction capability of these codes is discussed, and in some cases the actual minimum distance is found. Decoding algorithms based on majority-logic decision are proposed for these codes.

Published in:

Information Theory, IEEE Transactions on  (Volume:24 ,  Issue: 1 )

Date of Publication:

Jan 1978

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.