By Topic

A quasi-Bayes unsupervised learning procedure for priors (Corresp.)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Unsupervised Bayes sequential learning procedures for classification and estimation are often useless in practice because of the amount of computation required. In this paper, a version of a two-class decision problem is considered, and a quasi-Bayes procedure is motivated and defined. The proposed procedure mimics closely the formal Bayes solution while involving only a minimal amount of computation. Convergence properties are established and some numerical illustrations provided. The approach compares favorably with other non-Bayesian learning procedures that have been proposed and can be extended to more general situations.

Published in:

IEEE Transactions on Information Theory  (Volume:23 ,  Issue: 6 )