By Topic

Two-dimensional Markov spectral estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

A constructive proof is given for the existence and uniqueness of a two-dimensional discrete Markov random field which agrees with correlation values in a nearest neighbor array. The corresponding spectrum is the two-dimensional maximum entropy (ME) spectrum whose form was discovered by Burg. An iterative algorithm is developed for computing an approximation to this Markov spectrum for a regularly spaced array. The algorithm approximates the desired Markov correlation function by a truncated convolution power series (CPS) in an operator h . The algorithm's performance is demonstrated on both simulated data and real noise data. The Markov spectral estimate can offer higher resolution than previously proposed spectral estimates.

Published in:

Information Theory, IEEE Transactions on  (Volume:22 ,  Issue: 5 )