By Topic

Confidence intervals for regression (MEM) spectral estimates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

The probability density and confidence intervals for the maximum entropy (or regression) method (MEM) of spectral estimation are derived using a Wishart model for the estimated covariance. It is found that the density for the estimated transfer function of the regression filter may be interpreted as a generalization of the student's t distribution. Asymptotic expressions are derived which are the same as those of Akaike. These expressions allow a direct comparison between the performance of the maximum entropy (regression) and maximum likelihood methods under these asymptotic conditions. Confidence intervals are calculated for an example consisting of several closely space tones in a background of white noise. These intervals are compared with those for the maximum likelihood method (MLM). It is demonstrated that, although the MEM has higher peak to background ratios than the MLM, the confidence intervals are correspondingly larger. Generalizations are introduced for frequency wavenumber spectral estimation and for the joint density at different frequencies.

Published in:

IEEE Transactions on Information Theory  (Volume:22 ,  Issue: 5 )