By Topic

The Kalman filter: A robust estimator for some classes of linear quadratic problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

In this paper, theoretical justification is established for the common practice of applying the Kalman filter estimator to three classes of linear quadratic problems where the model statistics are not completely known, and hence specification of the filter gains is not optimum. The Kalman filter is shown to be a minimax estimator for one class of problems and to satisfy a saddlepoint condition in the other two classes of problems. Equations for the worst case covariance matrices are given which allow the specifications of the minimax Kalman filter gains and the worst case distributions for the respective classes of problems. Both time-varying and time-invariant systems are treated.

Published in:

Information Theory, IEEE Transactions on  (Volume:22 ,  Issue: 5 )