By Topic

Theoretical bounds on the complexity of inexact computations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

This paper considers the reduction in algorithmic complexity that can be achieved by permitting approximate answers to computational problems. It is shown that Shannon's rate-distortion function could, under quite general conditions, provide lower bounds on the mean complexity of inexact computations. As practical examples of this approach, we show that partial sorting of N items, insisting on matching any nonzero fraction of the terms with their correct successors, requires O (N \log N) comparisons. On the other hand, partial sorting in linear time is feasible (and necessary) if one permits any finite fraction of pairs to remain out of order. It is also shown that any error tolerance below 50 percent can neither reduce the state complexity of binary N -sequences from the zero-error value of O(N) nor reduce the combinational complexity of N -variable Boolean functions from the zero-error level of O(2^{N}/N) .

Published in:

Information Theory, IEEE Transactions on  (Volume:22 ,  Issue: 5 )