By Topic

Recursive estimation from discrete-time point processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

The paper presents models for discrete-time point processes (DTPP) and schemes for recursive estimation of signals randomly influencing their rates. Although the models are similar to the better known models of signals in additive Gaussian noise, DTPP differ from these in that it is possible for DTPP's to find recursive representations for the nonlinear filters. If the signal can be modeled as a finite state Markov process, then these representations reduce to explicit recursive finite-dimensional filters. The derivation of the estimation schemes, as well as the filters themselves, present a surprising similarity to the Kalman filters for signals in Gaussian noise. We present finally an application of the estimation schemes derived in the paper to the estimation of the state of a random time-division multiple access (ALOHA-type) computer network.

Published in:

Information Theory, IEEE Transactions on  (Volume:22 ,  Issue: 4 )