Cart (Loading....) | Create Account
Close category search window
 

Backwards Markovian models for second-order stochastic processes (Corresp.)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

A state-space model of a second-order random process is a representation as a linear combination of a set of state-variables which obey first-order linear differential equations driven by an input process that is both white and uncorrelated with the initial values of the state-variables. Such a representation is often called a Markovian representation. There are applications in which it is useful to consider time running backwards and to obtain corresponding backwards Markovian representations. Except in one very special circumstance, these backwards representations cannot be obtained simply by just reversing the direction of time in a forwards Markovian representation. We show how this problem can be solved, give some examples, and also illustrate how the backwards model can be used to clarify certain least squares smoothing formulas.

Published in:

Information Theory, IEEE Transactions on  (Volume:22 ,  Issue: 4 )

Date of Publication:

Jul 1976

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.