By Topic

Discrete-time spectral estimation of continuous-parameter processes -- A new consistent estimate

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

This paper presents a new estimation scheme for the spectral density function of a stationary time series from observations taken at discrete instants of time. The sampling instants are determined by a Poisson point process on the positive real line. Under weak smoothness conditions on the spectral density, asymptotic expressions for the bias and Variance are derived, and it is shown that the estimate is mean-square consistent for all positive values of the average sampling rate. The new estimate compares favorably with the classical continuous-time spectral estimates.

Published in:

IEEE Transactions on Information Theory  (Volume:22 ,  Issue: 3 )