By Topic

Concerning a bound on undetected error probability (Corresp.)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

In the past, it has generally been assumed that the probability of undetected error for an (n,k) block code, used solely for error detection on a binary symmetric channel, is upperbounded by 2^{-(n-k)} . In this correspondence, it is shown that Hamming codes do indeed obey this bound, but that the bound is violated by some more general codes. Examples of linear, cyclic, and Bose-Chaudhuri-Hocquenghem (BCH) codes which do not obey the bound are given.

Published in:

IEEE Transactions on Information Theory  (Volume:22 ,  Issue: 2 )