Cart (Loading....) | Create Account
Close category search window
 

Quantum-mechanical linear filtering of random signal sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

The problem of estimating a member of a scalar random signal sequence with quantum-mechanical measurements is considered. The minimum variance linear estimator based on an optimal present quantum measurement and optimal linear processing of past measurements is found. When the average optimal measurement without postprocessing, for a fixed signal, is linear in the random signal and the signal sequence is pairwise Gaussian, the optimal processing separates: the optimal measurement is the same as the optimal measurement without regard to past data, and the past and present data are processed classically. The results are illustrated by considering the estimator of the real amplitude of a laser signal received in a single-mode cavity along with thermal noise; when the random signal sequence satisfies a linear recursion, the estimate can be computed recursively. For a one-step memory signal sequence it is shown that the optimal observable generally differs from the optimal observable disregarding the past; the optimal measurement can be computed recursively.

Published in:

Information Theory, IEEE Transactions on  (Volume:22 ,  Issue: 1 )

Date of Publication:

Jan 1976

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.