By Topic

Moments of correlated digital signals for error probability evaluation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

In digital communication systems, the error probability in the presence of intersymbol interference (II) and additive noise may be calculated to any desired degree of accuracy by well-known approximation methods which avoid the exponential computation growth (with the number of interferers) inherent in an exhaustive method, on the condition that a fast technique for computing II moments is available. Such a technique is indeed available at present, but it is strongly limited by the assumption that the data symbols are mutually independent. In this paper, this limitation is removed, and a fast procedure is given for computing H moments of correlated digital signals. The computations grow linearly with the number of interferers. The assumption made is that correlated symbols are produced by a general finite-state sequential machine. As illustrative examples, the fast procedure is applied to bipolar and Franaszek MS-43 codes.

Published in:

Information Theory, IEEE Transactions on  (Volume:21 ,  Issue: 5 )