By Topic

Distribution-free exponential error bound for nearest neighbor pattern classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

The rate of convergence of the nearest neighbor (NN) rule is investigated when independent identically distributed samples take values in a d -dimensional Euclidean space. The common distribution of the sample points need not be absolutely continuous. An upper bound consisting of two exponential terms is given for the probability of large deviations of error probability from the asymptotic error found by Cover and Hart. The asymptotically dominant first term of this bound is distribution-free, and its negative exponent goes to infinity approximately as fast as the square root of the number of preclassified samples. The second term depends on the underlying distributions, but its exponent is proportional to the sample size. The main term is explicitly given and depends very weakly on the dimension of the space.

Published in:

IEEE Transactions on Information Theory  (Volume:21 ,  Issue: 5 )