Cart (Loading....) | Create Account
Close category search window
 

Random coding theorems for the general discrete memoryless broadcast channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

Three different communication situations are considered for the general nondegraded discrete memoryless broadcast channel with two components. In the most general situation, common and separate information is sent to both receivers. In another situation, only separate information is sent, and in a third, one Common and one separate message is sent. For each communication situation a random coding inner bound on the capacity region is derived. An example is presented which Shows that in the most general situation the inner bound strictly dominates the family of rates obtained by time-sharing. The capacity region for the general situation is characterized by a limiting expression. The relationship with the degraded broadcast channel and the connection with other multiway channels, such as the channel with two senders and two receivers, is shown.

Published in:

Information Theory, IEEE Transactions on  (Volume:21 ,  Issue: 2 )

Date of Publication:

Mar 1975

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.