By Topic

Derivation and evaluation of improved tracking filter for use in dense multitarget environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

When tracking targets in dense environments, sensor reports originating from sources other than the target being tracked (i.e., from clutter, thermal false alarms, other targets) are occasionally incorrectly used in track updating. As a result tracking performance degrades, and the error covariance matrix calculated on-line by the usual types of tracking filters becomes extremely unreliable for estimating actual accuracies. This paper makes three contributions in this area. First, a new tracking filter is developed that incorporates, in an a posteriori statistical fashion, all data available from sensor reports located in the vicinity of the track, and that provides both optimal performance and reliable estimates of this performance when operating in dense environments. The optimality of and the performance equations for this filter are verified by analytical and simulation results. Second, several computationally efficient classes of suboptimal tracking filters based on the optimal filter developed in this paper and on an optimal filter of another class that appeared previously in the literature are developed. Third, using an extensive Monte Carlo simulation, the various optimal and suboptimal filters as well as the Kalman filter are compared, with regard to the differences between the on-line calculated and experimental covariances of each filter, and with regard to relative accuracies, computational requirements, and numbers of divergences or lost tracks each produces.

Published in:

IEEE Transactions on Information Theory  (Volume:20 ,  Issue: 4 )