Cart (Loading....) | Create Account
Close category search window
 

On the \epsilon -entropy and the rate-distortion function of certain non-Gaussian processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Letxi = {xi(t), 0 leq t leq T}be a process with covariance functionK(s,t)andE int_0^T xi^2(t) dt < infty. It is proved that for everyvarepsilon > 0thevarepsilon-entropyH_{varepsilon}(xi)satisfies begin{equation} H_{varepsilon}(xi_g) - mathcal{H}_{xi_g} (xi) leq H_{varepsilon}(xi) leq H_{varepsilon}(xi_g) end{equation} wherexi_gis a Gaussian process with the covarianeeK(s,t)andmathcal{H}_{xi_g}(xi)is the entropy of the measure induced byxi(in function space) with respect to that induced byxi_g. It is also shown that ifmathcal{H}_{xi_g}(xi) < inftythen, asvarepsilon rightarrow 0begin{equation} H_{varepsilon}(xi) = H_{varepsilon}(xi_g) - mathcal{H}_{xi_g}(xi) + o(1). end{equation} Furthermore, ff there exists a Gaussian processg = { g(t); 0 leq t leq T }such thatmathcal{H}_g(xi) < infty, then the ratio betweenH_{varepsilon}(xi)andH_{varepsilon}(g)goes to one asvarepsilongoes to zero. Similar results are given for the rate-distortion function, and some particular examples are worked out in detail. Some cases for whichmathcal_{xi_g}(xi) = inftyare discussed, and asymptotic bounds onH_{varepsilon}(xi), expressed in terms ofH_{varepsilon}(xi_g), are derived.

Published in:

Information Theory, IEEE Transactions on  (Volume:20 ,  Issue: 4 )

Date of Publication:

Jul 1974

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.