Cart (Loading....) | Create Account
Close category search window
 

Optimal coding with a single standard run length

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

The optimum single standard run lengths for a binary first-order Markov source are derived and extended to multilevel first-order Markov sources. Maximization of the compression ratio is used as the criterion of optimality. When the output symbols are block coded, the optimal single standard run lengthn_ifor each symbol is shown to satisfy an implicit equation of the form(n_i - 1)(-ln q_{ii}) = 1 - q_{ii}^ {n_i}, whereq_{ii}is a transition probability. An expression for the overall compression ratio is derived for the binary case, and a comparison is made with enumerative source encoding. Compression ratio maxima are found by computer search for the binary independent source when the output symbols are subsequently Huffman coded, and a comparison of this scheme with ordinary run-length and source-extension coding is given.

Published in:

Information Theory, IEEE Transactions on  (Volume:20 ,  Issue: 3 )

Date of Publication:

May 1974

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.