Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Cooperative broadcasting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

This paper shows that several transmitters operating in an additive white Gaussian noise environment can send at rates strictly dominating time-multiplex and frequency-multiplex rates by use of a superposition scheme that pools the time, bandwidth, and power allocations of the transmitters. This pooling can be achieved without cooperative action, except for agreement on the actual rate of transmission each transmitter will allow itself. The superposition scheme involves subtraction from the received signal of the estimated signals sent by the other transmitters, followed by decoding of the intended signal. This scheme has been shown to be optimal. We conclude that present methods of allocating different frequency bands to different transmitters are necessarily suboptimal.

Published in:

Information Theory, IEEE Transactions on  (Volume:20 ,  Issue: 3 )