By Topic

Optimization of k nearest neighbor density estimates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Nonparametric density estimation using the k -nearest-neighbor approach is discussed. By developing a relation between the volume and the coverage of a region, a functional form for the optimum k in terms of the sample size, the dimensionality of the observation space, and the underlying probability distribution is obtained. Within the class of density functions that can be made circularly symmetric by a linear transformation, the optimum matrix for use in a quadratic form metric is obtained. For Gaussian densities this becomes the inverse covariance matrix that is often used without proof of optimality. The close relationship of this approach to that of Parzen estimators is then investigated.

Published in:

Information Theory, IEEE Transactions on  (Volume:19 ,  Issue: 3 )