By Topic

Commutative group codes for the Gaussian channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

A class of codes for the Gaussian channel is analyzed. The code class is a subclass of the group codes for the Gaussian channel described by Slepian. Using the vector model for the Gaussian channel, the code vectors are obtained by transformations of an initial vector. The class of codes in which the transformations form a commutative group is called the class of commutative group codes. The performance of the codes is evaluated using the union bound on the error probability as a performance measure. The union bound is shown to be closely related to the moments of the scalar product between the code vectors. Commutative group codes are described. It is shown that linear algebraic codes may be represented as commutative group codes. The code class is also shown to include simplex and biorthogonal codes in all dimensions.

Published in:

Information Theory, IEEE Transactions on  (Volume:19 ,  Issue: 2 )