By Topic

A note on burst-error correction using the check polynomial (Corresp.)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

When decoding a cyclic code, an alternative to computing the syndrome by dividing the received n -tuple W(x) by the generator polynomial G(x) is to compute the product H(x)W(x) , mod x^n - 1 , with the check polynomial H(x) . It is shown in this paper that the form of the product can be predicted in terms of general code parameters and corresponds closely to the burst error from which it is derived. By using the properties of the product sequence, a burst-error decoder is derived in such a way that a family of potentially fast burst-error decoders can be constructed. Another important application of the proposed technique concerns decoder implementation for the correction of a synchronization error (slip) when the coset code technique is used. It is shown that slip correction can be implemented so that both the magnitude and direction of slip are determined by examining only one received n -tuple.

Published in:

IEEE Transactions on Information Theory  (Volume:19 ,  Issue: 2 )