By Topic

Finite-dimensional sensor orbits and optimal nonlinear filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

The filtering problem of a system with linear dynamics and non-Gaussian a priori distribution is investigated. A closed-form exact solution to the problem is presented along with an approximation scheme. The approximation is made in the construction of a mathematical model. It reduces optimal estimation to a combination of linear estimations. The asymptotic behavior of the filter is examined. The limiting distributions of the conditional mean and the conditional-error covariance exist as the time interval of observation becomes infinite. In the autonomous case, the estimate for the Wiener problem satisfies a linear stochastic differential equation. A large class of nonlinear problems with more nonlinear features than the one discussed above can be reduced to it through the idea of finite-dimensional sensor orbits. The general idea and a number of examples are discussed briefly.

Published in:

Information Theory, IEEE Transactions on  (Volume:18 ,  Issue: 5 )