By Topic

Computation of channel capacity and rate-distortion functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

By defining mutual information as a maximum over an appropriate space, channel capacities can be defined as double maxima and rate-distortion functions as double minima. This approach yields valuable new insights regarding the computation of channel capacities and rate-distortion functions. In particular, it suggests a simple algorithm for computing channel capacity that consists of a mapping from the set of channel input probability vectors into itself such that the sequence of probability vectors generated by successive applications of the mapping converges to the vector that achieves the capacity of the given channel. Analogous algorithms then are provided for computing rate-distortion functions and constrained channel capacities. The algorithms apply both to discrete and to continuous alphabet channels or sources. In addition, a formalization of the theory of channel capacity in the presence of constraints is included. Among the examples is the calculation of close upper and lower bounds to the rate-distortion function of a binary symmetric Markov source.

Published in:

Information Theory, IEEE Transactions on  (Volume:18 ,  Issue: 4 )