Cart (Loading....) | Create Account
Close category search window
 

Some relations among RKHS norms, Fredholm equations, and innovations representations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kailath, T. ; Stanford University, Stanford, CA, USA ; Geesey, R. ; Weinert, H.L.

We first show how reproducing kernel Hilbert space (RKHS) norms can be determined for a large class of covariance functions by methods based on the solution of a Riccati differential equation or a Wiener-Hopf integral equation. Efficient numerical algorithms for such equations have been extensively studied, especially in the control literature. The innovations representations enter in that it is they that suggest the form of the RKHS norms. From the RKHS norms, we show how recursive solutions can be obtained for certain Fredholm equations of the first kind that are widely used in certain approaches to detection theory. Our approach specifies a unique solution: moreover, the algorithms used are well suited to the treatment of increasing observation intervals.

Published in:

Information Theory, IEEE Transactions on  (Volume:18 ,  Issue: 3 )

Date of Publication:

May 1972

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.