By Topic

A parametric procedure for learning with an imperfect teacher (Corresp.)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

Pattern recognition problems involving learning with a bad teacher or learning without a teacher require the updating of the conditional densities of unknown parameters using a mixture of probability density functions. Mixtures of density functions in general are not reproducing and hence the computations are infeasible. For learning without a teacher, a computationally feasible scheme has been suggested by Agrawala [1]. The learning procedure proposed by Agrawala makes use of a probabilistic labeling scheme. The probabilistic labeling scheme is extended to allow the use of reproducing densities for a large class of problems, including the problem of learning with an imperfect teacher.

Published in:

Information Theory, IEEE Transactions on  (Volume:18 ,  Issue: 2 )