By Topic

A bound on the rate-distortion function and application to images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

An upper bound on the rate-distortion function for discrete ergodic sources with memory is developed by partitioning the source sample space into a finite number of disjoint subsets and bounding the rates for each subset. The bound depends only on the mean vectors and covariance matrices for the subsets and is easy to compute. It is tighter than the Gaussian bound for sources that exhibit clustering of either the values or covariances of successive source outputs. The bound is evaluated for a certain class of pictorial data using both one-dimensional and two-dimensional blocks of picture elements. Two-dimensional blocks yield a tighter bound than one-dimensional blocks; both result in a significantly tighter bound than the Gaussian bound.

Published in:

Information Theory, IEEE Transactions on  (Volume:18 ,  Issue: 1 )