By Topic

Rapidly converging second-order tracking algorithms for adaptive equalization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

This paper is concerned with the design of second-order algorithms for an equalizer in a training or a tracking mode. The algorithms govern the iterative adjustment of the equalizer parameters for the minimization of the mean-squared error. On the basis of estimated bounds for the eigenvalues of the signal plus noise correlation matrix, an optimal second-order algorithm is derived. The resultant convergence is considerably faster than the commonly used first-order fixed-size gradient-search procedure. The variance of the optimal algorithm is shown to have a slightly larger bound than the present first-order fixed-step algorithm. However, a computer simulation for an input signal-to-noise ratio of 30 dB shows that for large intersymbol interference the improvement in the convergence of the mean more than compensates for the small increase in variance. For moderate intersymbol interference the simulation shows no variance increase. Suboptimum second-order algorithms with smaller improvement in the convergence rate and smaller increase in the variance bound are also considered. The results indicate that, on the average, the new algorithms lead to faster tracking of changes in the channel characteristics and thereby result in a smaller error rate.

Published in:

Information Theory, IEEE Transactions on  (Volume:17 ,  Issue: 5 )