By Topic

Independence of measurements and the mean recognition accuracy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

A situation of great practical importance in pattern recognition is the case where the designer has only a finite number of sample patterns from each class and the class-conditional density functions are not completely known. Recent results indicate that in this case the dimensionality of the pattern vector, i.e., the number of measurements, should not be arbitrarily increased, since above a certain value (corresponding to the optimal measurement complexity), the performance starts to deteriorate instead of improving steadily. However, whether this phenomenon occurs in the case of independent measurements has been an open question until now. In this paper the following result of practical importance is derived. When the measurements are independent, and a Bayesian approach is taken, one can add extra measurements without fear of this peaking of performance; i.e., the optimal measurement complexity is infinite. In fact, under certain conditions, having just one sample from class 1, and none at all from class 2, can result in a recognition accuracy arbitrarily close to unity for a large enough number of measurements. The implication of these results to practice is discussed, along with the general question of dimensionality and sample size.

Published in:

IEEE Transactions on Information Theory  (Volume:17 ,  Issue: 4 )