By Topic

Nonparametric Bayes-risk estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fralick, S. ; Comtech Adv. Systems, Inc., Sunnyvale, CA, USA ; Scott, R.

Two nonparametric methods to estimate the Bayes risk using classified sample sets are described and compared. The first method uses the nearest neighbor error rate as an estimate to bound the Bayes risk. The second method estimates the Bayes decision regions by applying Parzen probability-density function estimates and counts errors made using these regions. This estimate is shown to be asymptotically consistent in mean square. The results of experiments with these estimators on simulated and empirical data imply that the estimators both have acceptable small-sample properties; however, small-sample convergence of both estimators depends strongly on the choice of metric and local area or window size in the measurement space.

Published in:

Information Theory, IEEE Transactions on  (Volume:17 ,  Issue: 4 )