By Topic

Sequential structure and parameter-adaptive pattern recognition--I: Supervised learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

Bayes optimal sequential structure and parameter-adaptive pattern-recognition systems for continuous data are derived. Both off-line (or prior to actual operation) and on-line (while in operation) supervised learning is considered. The concept of structure adaptation is introduced and both structure as well as parameter-adaptive optimal pattern-recognition systems are obtained. Specifically, for the class of supervised-learning pattern-recognition problems with Gaussian process models and linear dynamics, the adaptive pattern-recognition systems are shown to be decomposable ("partition theorem") into a linear nonadaptive part consisting of recursive matched Kalman filters, a nonlinear part--a set of probability computers--that incorporates the adaptive nature of the system, and finally a part of the correlator-estimator (Kailath) form. Extensions of the above results to the M -ary hypotheses case where M \geq 2 are given.

Published in:

Information Theory, IEEE Transactions on  (Volume:16 ,  Issue: 5 )