By Topic

Information rates of autoregressive processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

The rate distortion functionR(D)is calculated for two time-discrete autoregressive sources--the time-discrete Gaussian autoregressive source with a mean-square-error fidelity criterion and the binary-symmetric first-order Markov source with an average probability-of-error per bit fidelity criterion. In both cases it is shown thatR(D)is bounded below by the rate distortion function of the independent-letter identically distributed sequence that generates the autoregressive source. This lower bound is shown to hold with equality for a nonzero region of small average distortion. The positive coding theorem is proved for the possibly nonstationary Gaussian autoregressive source with a constraint on the parameters. Finally, it is shown that the rate distortion function of any time-discrete autoregressive source with a difference distortion measure can be bounded below by the rate distortion function of the independent-letter identically distributed generating sequence with the same distortion measure.

Published in:

Information Theory, IEEE Transactions on  (Volume:16 ,  Issue: 4 )