By Topic

Examples of optimum detection of Gaussian signals and interpretation of white noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

Simultaneously orthogonal expansion of two processes is one of the major mathematical tools for solving the problem of optimum detection of Gaussian signals in Gaussian noise. This expansion yields two integral equations: a homogeneous equation for the threshold and an inhomogeneous one for the test statistic of an optimum decision rule. After reviewing the optimum detection theory leading to the integral equations, four examples are presented to illustrate techniques of solving these equations and determination of the thresholds and test statistics. These techniques involve only elementary calculus and simple linear algebra. Finally, by way of example, an asymptotic interpretation of "white noise" in the context of optimum detection theory is given.

Published in:

IEEE Transactions on Information Theory  (Volume:14 ,  Issue: 5 )