By Topic

Nonlinear prediction of a class of random processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

This paper is concerned with the minimum mean-squared error (MMSE) nonlinear prediction of a class of random processes. A class of random processes is defined by the property that its MMSE zero-memory predictor is represented by a finite sum of separable terms. Sufficient conditions for the existence of such processes are also considered. The nonlinear predictor is restricted to be composed of a linear filter in parallel with a zero-memory nonlinearity (ZNL) preceded by a variable delay, The optimum predictor is shown to be the solution of linear integral equations with the same kernel as for the optimum linear predictor. The first step of the derivation also yields a simpler scheme which ,only requires the addition of a ZNL to the optimum linear predictor. The improvements in the MMSE of the two nonlinear systems over the linear case are compared and illustrated by a numerical example.

Published in:

Information Theory, IEEE Transactions on  (Volume:14 ,  Issue: 5 )