Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Asymptotically efficient quantizing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

It is shown, under weak assumptions on the density function of a random variable and under weak assumptions on the error criterion, that uniform quantizing yields an output entropy which asymptotically is smaller than that for any other quantizer, independent of the density function or the error criterion. The asymptotic behavior of the rate distortion function is determined for the class of \nu th law loss functions, and the entropy of the uniform quantizer is compared with the rate distortion function for this class of loss functions. The extension of these results to the quantizing of sequences is also given. It is shown that the discrepancy between the entropy of the uniform quantizer and the rate distortion function apparently lies with the inability of the optimal quantizing shapes to cover large dimensional spaces without overlap. A comparison of the entropies of the uniform quantizer and of the minimum-alphabet quantizer is also given.

Published in:

Information Theory, IEEE Transactions on  (Volume:14 ,  Issue: 5 )