By Topic

Learning and convergence analysis of neural-type structured networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Polycarpou, M.M. ; Dept. of Electr. Eng.-Syst., Univ. of Southern California, Los Angeles, CA, USA ; Ioannou, P.A.

A class of feedforward neural networks, structured networks, has recently been introduced as a method for solving matrix algebra problems in an inherently parallel formulation. A convergence analysis for the training of structured networks is presented. Since the learning techniques used in structured networks are also employed in the training of neural networks, the issue of convergence is discussed not only from a numerical algebra perspective but also as a means of deriving insight into connectionist learning. Bounds on the learning rate are developed under which exponential convergence of the weights to their correct values is proved for a class of matrix algebra problems that includes linear equation solving, matrix inversion, and Lyapunov equation solving. For a special class of problems, the orthogonalized back-propagation algorithm, an optimal recursive update law for minimizing a least-squares cost functional, is introduced. It guarantees exact convergence in one epoch. Several learning issues are investigated

Published in:

Neural Networks, IEEE Transactions on  (Volume:3 ,  Issue: 1 )