By Topic

Signal energy distribution in time and frequency

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

The Fourier representation of signals and its relation to the signal structure in time and frequency, and more generally the inherent properties of phase-modulated signals, have received considerable attention in the past. These topics have led to such seemingly unrelated studies as the representation of a signal in a combined time-frequency plane, "instantaneous power spectra," and the ambiguity function and its transform relations. It is shown in this paper that the studies can be unified by the introduction of the concept of the complex energy density function of a signal. The function is an extension and combination of the one-dimensional energy density functions in time and frequency, the energy density spectrum |\Psi (f)|^{2} , and energy density waveform |\psi (t)|^{2} . On the basis of the complex energy density function, the significance of complicated-appearing transform relations is readily understood. The new concept also conveys a good insight into the internal structure of phase-modulated signals.

Published in:

Information Theory, IEEE Transactions on  (Volume:14 ,  Issue: 3 )