By Topic

Optimal unsupervised learning multicategory dependent hypotheses pattern recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

A Bayesian decision theory approach is applied to the solution of the problem of unsupervised parametric pattern recognition. The parametric model for this investigation includes the cases where both constant and time-varying unknown parameters are present, and, most significantly, the unknown hypotheses do not constitute a statistically independent sequence. They are restricted only to be from a source with finite-order Markov dependence. The resulting optimal learning system is found and shown to grow initially in size and memory until the N th observation (where N is the highest Markov order), and subsequently to remain of fixed size and memory. It can, therefore, operate indefinitely and continue to improve its ability to recognize patterns utilizing only a fixed size memory. In summary, the main contributions of this paper are the following: begin{enumerate} item the extension of previous investigations of the unsupervised parametric pattern recognition problem to include cases where both constant and time-varying unknown parameter vectors are simultaneously present; item that the a priori probabilities of the hypotheses, the time-varying parameters, and their transition laws may, if constant, be expressed as functions of the constant unknown parameter and, thus, also be learned; and item the removal of the assumption of statistical independence between hypotheses for the sequence of observations. end{enumerate}

Published in:

IEEE Transactions on Information Theory  (Volume:14 ,  Issue: 3 )