By Topic

An upper bound on average estimation error in nonlinear systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

An upper bound is obtained on the probability density of the estimate of the parameter m when a nonlinear function s(t, m) is transmitted over a channel that adds Gaussian noise, and maximum likelihood or maximum a posteriori estimation is used. If this bound is integrated with a loss function, an upper bound on the average error is obtained. Nonlinear (below threshold) effects are included. The problem is viewed in a Euclidean space. Evaluation of the probability density can be reduced to integrating the probability density of the observation over part of a hyperplane. By bounding the integrand, and using a larger part of the hyperplane, an upper bound is obtained. The resulting bound on mean-square error is quite close for the cases calculated.

Published in:

IEEE Transactions on Information Theory  (Volume:14 ,  Issue: 2 )