By Topic

Decision making in Markov chains applied to the problem of pattern recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

In many pattern-recognition problems there exist dependencies among the patterns to be recognized. In the past, these dependencies have not been introduced into the mathematical model when designing an optimal pattern-recognition system. In this paper the optimal decision rule is derived under the assumption of Markov dependence among the patterns to be recognized. Subsequently, this decision rule is applied to character-recognition problems. The main idea is to balance appropriately the information which is obtained from contextual considerations and the information from measurements on the character being recognized and thus arrive at a decision using both. Bayes' decision in Markov chains is presented and this mode of decision is adapted to character recognition. A look-ahead mode of decision is presented. The problem of estimation of transition probabilities is discussed. The experimental system is described and results of experiments on English legal text and names are presented.

Published in:

Information Theory, IEEE Transactions on  (Volume:13 ,  Issue: 4 )