By Topic

Polynomial time collision detection for manipulator paths specified by joint motions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Schweikard, A. ; Tech. Univ. Berlin, Germany

An exact collision detection algorithm is described and analyzed. The time bound considers the complexity of the solids, the number of joints, and the number of distinct collision configurations. A bound for the number of collision configurations can be taken directly from the input data. The algorithm is based on an exact treatment of trigonometric expressions. The representation of trigonometric constants is discussed. Since all computations are exact, the distances between objects can be arbitrarily small. It is shown that collision detection can be performed in polynomial time. Other measures for the complexity of a motion with respect to collision detection could be based on minimal distances between objects. In this case smaller distances lead to increased computing time

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:7 ,  Issue: 6 )