By Topic

Fibonacci codes for synchronization control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

A new family of codes is described for representing serial binary data, subject to constraints on the maximum separation between successive changes in value (0 \rightarrow 1, 1 \rightarrow , or both), or between successive like digits ( 0 's, 1 's, or both). These codes have application to the recording or transmission of digital data without an accompanying clock. In such cases, the clock must be regenerated during reading (receiving, decoding), and its accuracy controlled directly from the data itself. The codes developed for this type of synchronization are shown to be optimal, and to require a very small amount of redundancy. Their encoders and decoders are not unreasonably complex, and they can be easily extended to include simple error detection or correction for almost the same additional cost as is required for arbitrary data.

Published in:

IEEE Transactions on Information Theory  (Volume:11 ,  Issue: 2 )