By Topic

Multichannel cortical stimulation for restoration of vision

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)
Troyk, P.R. ; Pritzker Inst. of Med. Eng., Illinois Inst. of Technol., Chicago, IL, USA ; Agnew, W. ; Bak, M. ; Berg, J.
more authors

Development of an intracortical visual prosthesis for restoration of vision, has been, and continues to be an elusive goal of neural prosthesis researchers. Our multi-institutional team has tested the feasibility of implanting and evaluating large numbers of stimulation/recording electrodes in an animal model. Using a combination of 8-electrode arrays and individual electrodes, 152 activated iridium microelectrodes were implanted in area V1 of a macaque. Visual stimuli were used to define a retinotopic map. Spatial coordinates for each electrode were used to train the animal to use electrical stimulation in performing a visual psychophysical task.

Published in:

Engineering in Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference, 2002. Proceedings of the Second Joint  (Volume:3 )

Date of Conference:

23-26 Oct. 2002