By Topic

A lightweight Integrated Electronics Module (IEM) packaging design for the MESSENGER spacecraft

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ling, S.X. ; Appl. Phys. Lab., Johns Hopkins Univ., Laurel, MD, USA ; Conde, R.F. ; Le, B.Q.

MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) is a mission to orbit the planet Mercury. The comprehensive scientific data collected through the one-Earth-year orbital mission phase will allow scientists to study and understand the environment and evolution of the innermost terrestrial planet. The five-year cruise phase and the harsh environment of Mercury orbit pose challenges to the spacecraft subsystem design in terms of balancing an extremely tight mass budget with robust thermal and mechanical designs. The packaging design for a low-cost, lightweight Integrated Electronics Module (IEM) is presented in this paper. The commercial 6U Compact Peripheral Component Interconnect (PCI) Printed Wiring Board (PWB) design has been selected to reduce development cost. Several unique features of the IEM packaging design include using the RAD6000 processor developed by BAE Systems in the Main Processor board, 64-Mb Hyundai TSOPs stacked two-high for 1 GB of SDRAM on the Solid-State Recorder Assembly, and a 32-mm Ceramic Column Grid Array as the PCI Bridge chip. The IEM chassis that accommodates five PWBs is designed with thin-wall aluminum for weight savings, and is fabricated by investment casting for cost savings. Extensive thermal and structural analyses have been performed to ensure that the IEM is capable of surviving and functioning during launch, cruise, and orbit. Environment tests have been conducted on the pre-engineering IEM to validate analytical results.

Published in:

Digital Avionics Systems Conference, 2002. Proceedings. The 21st  (Volume:2 )

Date of Conference: