Cart (Loading....) | Create Account
Close category search window

A versatile CMOS linear transconductor/square-law function

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

A simple CMOS circuit technique for realizing both linear transconductance and a precision square-law function is described. The circuit provides two separate outputs in the linear as well as square-law modes. The linear outputs both have a range of 100% or more of the total quiescent current value. The theory of operation is presented and effects of transistor nonidealities on the performance are investigated. Design optimization techniques are developed. Experimental results measured on nonoptimized prototypes are: distortion of 0.2% for input signals up to 2.4 V/SUB p-p/ in the case of linear transfer function and 1.3% in the case of the square-law transfer function, with a DC to -3-dB bandwidth of up to 20 MHz. Improved performance is expected when the optimization techniques developed are applied. The circuit is versatile in application: diverse applications are demonstrated in the fields of linear amplifiers, continuous-time filters, and nonlinear function implementation.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:22 ,  Issue: 3 )

Date of Publication:

Jun 1987

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.