By Topic

CMOS integrated silicon pressure sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

The sensor described includes a four-arm piezoresistance bridge circuit, an amplifier, and a bridge excitation circuit. This circuit is used to stabilize changes in sensitivity due to variations in temperature and supply voltage. The sensor was fabricated using a self-aligned double-poly Si gate p-well CMOS process combined with an electrochemical etch-stop technique using N/SUB 2/H/SUB 4/-H/SUB 2/O anisotropic etchant for the thin-square diaphragm formation. The silicon wafer was electrostatically adhered to a glass plate to minimize thermally induced stress. Less than a ±0.5% sensitivity shift and less than a ±5-mV offset shift were obtained in the 0-70°C range, with a 1-V/kg/cm/SUP 2/ pressure sensitivity. By using a novel excitation technique, a sensitivity change of less than ±1.5% under a ±10% supply voltage variation was also achieved.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:22 ,  Issue: 2 )