By Topic

Design procedures for differential cascode voltage switch circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Differential cascode voltage switch (DCVS) logic is a CMOS circuit technique which has potential advantages over conventional NAND/NOR logic in terms of circuit delay, layout density, power dissipation, and logic flexibility. Two procedures are presented for constructing DCVS trees to perform random logic functions. The first procedure uses a Karnaugh mapping technique and is a very powerful pictorial method for hand-processing designs involving up to six variables. The second procedure is a tabular method based on the Quine-McCluskey approach and is suitable for functions with more than six variables. Both of these procedures are considerably easier to implement than a recently proposed algebraic technique which relies upon decomposition and factorization of Boolean expressions. Several DCVS circuits that have been synthesized by the Karnaugh map (K-map) and tabular procedures are presented.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:21 ,  Issue: 6 )