By Topic

A 256K CMOS SRAM with variable impedance data-line loads

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

A 256K (32K/spl times/8) CMOS SRAM utilizing variable impedance loads and a pulsed word-line (PWL) technique is described. In the WRITE cycle, the variable impedance loads of the data lines enter a high impedance state and reduce the operating power. During the READ cycle, the PWL technique is used to achieve high-speed operation and low power dissipation. The internal clocks generated by the address transition detectors activate word-line and sense amplifiers for READ operation and disable them after the data are sent to D/SUB out/ buffers. This PWL technique eliminates the precharge time of 20 ns, which corresponds to 30% of the access time. The RAM offers 45-ns address access time and 40-mW operating power in the WRITE cycle of 1 MHz.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:20 ,  Issue: 5 )