Cart (Loading....) | Create Account
Close category search window
 

A ratio-independent algorithmic analog-to-digital conversion technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

An algorithmic analog-to-digital conversion technique is described which is capable of achieving high-resolution conversion without the use of matched capacitors in an MOS technology. The exact integral multiplication of the signal required by the conversion is realized through an algorithmic circuit method which involves charge summing with an MOS integrator and exchange of capacitors. A first-order cancellation of the charge injection effect from MOS transistor switches is attained with a combination of differential circuit implementation and an optimum timing scheme. An experimental prototype has been fabricated with a standard 5-/spl mu/m n-well CMOS process. It achieves 12-bit resolution at a sampling rate of 8 kHz. The analog chip area measures 2400 mils/SUP 2/.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:19 ,  Issue: 6 )

Date of Publication:

Dec. 1984

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.