By Topic

A GaAs low-power normally-on 4-bit ripple carry adder

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

The realization and performance of a low-power buffered FET logic (1p-BFL) 4 bit ripple carry adder is reported. Performance measurements indicate a critical path average propagation delay of 1.9 ns at a total power dissipation of 45 mW, output buffers included (27 mW without). This corresponds to an average propagation delay of 380 ps/gate (FI/FO=/SUP 5///SUB 3/), an average power consumption of 1.56 mW/gate, and a power-delay product of 0.6 pJ. Best speed performance biasing conditions yield a 1.25 ns critical path average propagation delay at a total power dissipation of 180 mW (180 mW excluding buffers), which corresponds to an average gate delay, power consumption and power-delay product of 250 ps, 6 mW, and 1.5 pJ, respectively. Standard cell layout techniques yield an average gate density of 200 gates/mm/SUP 2/, interconnection wiring included.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:18 ,  Issue: 3 )